Reciprocal Excitation Between Biological and Robotic Research
نویسندگان
چکیده
While biological principles have inspired researchers in computational and engineering research for a long time, there is still rather limited knowledge flow back from computational to biological domains. This paper presents examples of our work where research on anthropomorphic robots lead us to new insights into explaining biological movement phenomena, starting from behavioral studies up to brain imaging studies. Our research over the past years has focused on principles of trajectory formation with nonlinear dynamical systems, on learning internal models for nonlinear control, and on advanced topics like imitation learning. The formal and empirical analyses of the kinematics and dynamics of movements systems and the tasks that they need to perform lead us to suggest principles of motor control that later on we found surprisingly related to human behavior and even brain activity. INTRODUCTION When searching for a general framework of how to formalize the learning of coordinated movement, some of the ideas developed in the middle of the 20th century still remain useful. At this time, theories from optimization theory, in particular in the context of dynamic programming (Bellman, 1957; Dyer & McReynold, 1970), described the goal of learning control in learning a policy. A policy is formalized as a function that maps the continuous state vector x of a control system and its environment, possibly in a time dependent way, to a continuous control vector u: u x = π( ) , , α t (1) The parameter vector α denotes the problem specific adjustable parameters in the policy !not unlike the parameters in neural network learning. At the first glance, one might suspect that not much was gained by this overly general formulation. However, given some cost criterion that can evaluate the quality of an action u in a particular state x, dynamic programming, and especially its modern relative, reinforcement learning, provide a well founded set of algorithms of how to compute the policy ! for complex nonlinear control problems. Unfortunately, as already noted in Bellmans original work, learning of ! becomes computationally intractable for even moderately high dimensional state-action spaces. Although recent developments in reinforcement learning increased the range of complexity that can be dealt with (e.g., [1]; [2]; [3]), it still seems that there is a long if not impossible way to go to apply general policy learning to complex control problems. In most robotics applications, the full complexity of learning a control policy is strongly reduced by providing prior information about the policy. The most common priors are in terms of a desired trajectory, [ ( ), ̇ ( )] x x d d t t , usually hand-crafted by the insights of a human expert. For instance, by using a PD controller, a (explicitly time dependent) control policy can be written as:
منابع مشابه
Modelling of Cylindrical Contact Theories of Hertz and JKR for the Manipulation of Biological Micro/Nanoparticles
This paper deals with the development and modeling of cylindrical contact theories and also the simulation of contact forces to be applied in the manipulation of various biological micro/nanoparticles by means of the AFM. First, the simulation of contact forces in four environments has been carried out, which are the most commonly used fluid in biomanipulation. Then, the spherical and cy...
متن کاملThe Effects of Excitation Signal on the Resolution of the Liquid Crystal Capacitive Chemical and Biological Sensors
In this paper excitation characteristics of the Liquid Crystal (LC) capacitive chemical and biological sensor are examined and the optimum frequency and voltage range for the sensor interface are introduced. Interdigitated capacitor has been used for the sensor capacitance measurement and two different molecular orientations, homeotropic and homogenous, have been considered. The LC sensor capac...
متن کاملEffects of Rotational Motion in Robotic Needle Insertion
Background: Robotic needle insertion in biological tissues has been known as one the most applicable procedures in sampling, robotic injection and different medical therapies and operations.Objective: In this paper, we would like to investigate the effects of angular velocity in soft tissue insertion procedure by considering force-displacement diagram. Non-homogenous camel liver can be exploite...
متن کاملModeling and Simulation of Spherical and Cylindrical Contact Theories for Using in the Biological Nanoparticles Manipulation
The low Young's modulus of biological particles results in their large deformation against the AFM probe forces; therefore, it is necessary to study the contact mechanics of bioparticles in order to predict their mechanical behaviors. This paper specifically deals with the contact mechanics of DNA nanoparticles with spherical and cylindrical shapes during manipulation. In previous studies, ...
متن کاملA comarison between in vitro culture of two tomato parental lines and their reciprocal hybrids
متن کامل
Application of Nano-Contact Mechanics Models in Manipulation of Biological Nano-Particle: FE Simulation
Contact mechanics is related to the deformation study of solids that meet each other at one or more points. The physical and mathematical formulation of the problem is established upon the mechanics of materials and continuum mechanics and focuses on computations involving bodies with different characteristics in static or dynamic contact. Contact mechanics gives essential information for the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000